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THE STABILITY OF THE EQUILIBRIUM 
OF A WING IN AN UNSTEADY FLOW? 
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The stability of the equilibrium position of a wing is investigated. The wing is modelled by a heavy rigid body with a fixed point 
and is close in shape to a thin plate. The wing is fastened using a viscoelastic material which can be modelled by non-linear 
viscoelastic springs that keep the wing in a position close to horizontal. The motion of the wing is described by a system of non- 
linear ordinary integrodifferential equations which, using the model adopted, take account of the unsteady nature of the flow 
past the wing and the viscoelastic properties of the spring material. The stability of the equilibrium under persistent disturbances 
is analysed. This analysis is based on the use of series similar to those in the first Lyapunov method. The stability of the equilibrium 
for purely rotational motions of the wing about the longitudinal axis is investigated in the critical case of a single zero root of 
the characteristic equation. The Lyapunov constants which solve the stability problem are indicated. © 2000 Elsevier Science 
Ltd. All rights reserved. 

1. THE STABILITY OF THE E Q U I L I B R I U M  
U N D E R  P E R S I S T E N T  D I S T U R B A N C E S  

Consider the motion of a heavy rigid body (a wing) with a fixed point, subject to the action of viscoelastic 
forces in the support (the wing fixing) under the influence of an unsteady flow. 

We shall assume that the body is close in shape to an elongated plate with which we associate a system 
of coordinates Oxyz with the centre at the fixed point O and axes directed along the principal axes of 
inertia of the body for the point O. The Oz axis coincides with the major axis of the ellipsoid of inertia, 
the Oy axis concludes with the miner axis and the Ox axis completes the system of coordinates. 

We introduce a right-hand, rectangular system of coordinates Oxylzl with the Oyl axis directed along 
the ascending vertical and the OXl axis directed opposite to the velocity vector of the unperturbed free 
stream. Small perturbations are superimposed on this stream. 

We specify the position of the system of coordinates Oxyz relative to OXfflZl by the aircraft angles: 
tk (the yaw angle) is the angle of rotation of the trihedron Oxyz about the Oy 1 axis from the position 
when the two systems of coordinates are coincident, a~ (the pitch angle) is the angle of rotation about 
the Ozl axis in its new position Oz' after the first rotation and q~ (the bank angle) is the angle of rotation 
about the Ox axis in its position after the second rotation. 

We denote the projections of the unit vector of the Oyl axis by 131, 132 and 133, and also the projections 
of the unit vector of the ~/a, ~/2, ~/3 axis onto the axes of the system of coordinates Oxyz by OZl and then 
change from the angular variables ~, 0, ¢P, to the direction cosines 131, 133, ~h by putting 

sin 0 = 13], sin ~ = 71 , sin tp = 133 

S u p p o s e  A i (i = 1, 2, 3) are the principal moments of inertia of the body for point O, to i are the 
projections of the instantaneous angular velocity vector for the rotation of the body onto the axes of 
the fixed system of coordinates, x0, Y0, z0 are the coordinates of the centre of mass of the body in the 
fixed axes and Li ,  M i are, respectively, the moments of the viscoelastic and aerodynamic forces with 
respect to the moving axes. We write the equations of motion in the form (a derivative with respect to 
the time t is denoted by a dot) 

AlCbl +(A3 - A2)(02t-03 = mg(zo~2 -Y01~3)+/~ + Ml (1 2 3) 

(1.2) 
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We now express the quantities 132, "Y2, 'Y3 appearing in Eqs (1.2) in terms of 131, 133, 71 on the basis of 
geometrical considerations relating the direction cosines 13i and ~/k (i, k = 1, 2, 3). We then have 

~2=1+B2, ~/2=-13a+r2, ~q=l+F3 

where 132, FE, F3 are power series of 131, 133, 71. 
We shall assume that the wing is kept in a position close to horizontal by means of viscoelastic springs 

(which, generally speaking, are non-linear) and, taking account of the Volterra-Fr6chet representation 
[1, 2], we write the moments, with respect to the coordinate axes Ox, Oy, Oz, of the viscoelastic forces 
acting on the body in the following form 

I 
0 L, =/,(~3 + [13)+ I L( (t-s)(~3(s)+13°)ds+ I~ (~,,[~3,~/,,t) (1.3) 

0 

and the analogous expressions for L2, L3 after replacing by/1, 133, 60, L{, L~ and 12, ~/1, ~/0, L~, L~ 
respectively. 

In (1.3), li const, 130, 0 0 = 133, 71, = const, and L; are exponentially decreasing kernels (which characterize 
the viscoelastic properties of the material) 

[L;(t) t <. C 1 exp(-~lt), 0~1, C 1 = const > 0 (1.4) 

and the non-linear terms L7 (13b B3, 71, t) are functionals which include Volterra-Fr6chet series (without 
the linear terms) and contain multiple integrals which are assumed to have exponentially decreasing 
kernels. The linear terms in (1.3) correspond to small rotations about the coordinate axes and follow 
from the kinematic equations which associate small rotations about the coordinate axes Ox, Oy, Oz with 
the angles a~, d~, ~p and, consequently, according to (1.1), with 63, "ll, 131. 

It can also be assumed that formulae (1.3) describe all the relaxation processes in the material of 
the wing support (the spring material). 

Taking into account the unsteady nature of the flow past the wing, we shall take the moments of the 
aerodynamic forces in the form [3-5] 

t 

M i = mio +milOc+mi2~J+ ~.mij,20J j + Y. I l i j ( t - s ) ( O j ( s ) d s +  
~=1,2.3 j=L2.30 

t t 

+I Jil (t - s)(x(s)ds + I Ji2( t - s)~(s)ds + Jil (t)a(0) + Ji2(t)~(O) + 
0 0 

+ ~,l i j ( t )ol i (O)+mi(t)+M ff (1.5) 
./=1,2,3 

mik = const, i = 1,2,3; k = 1,2; ma0 = 0 

where a is the angle of attack, 13 is the glancing angle, the integral kernels lo{t), Ja(t) and are continuously 
differentiable and the moments mi(t ) due to small perturbations in'the stream velocity are continuous, 
bounded functions which satisfy the estimates 

IJ,,(01, [mi(t)l<~C2exp(-ot2t) 

a2, C 2 = const > 0 (1.6) 

The non-linear integral terms appearing in M'[ only contain integral kernels which tend to zero 
exponentially when t --4 +oo. We shall assume that 

t x = O + c t o ,  [3=gt, oq~=const 

or that 

~x = 131 + ~Xo, 13 = -71 (1.7) 

It can be assumed that the constant and integral kernels in (1.5) are initially calculated for relations 
of the form of (1.7) so we shall assume that, in formulae (1.5), ot and 13 are expressed in terms of 131, 
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"Y1 as given by (1.7). In this case, it can also be assumed that the non-linear terms in the dependences 
of a and 13 on 130, 130 ~/0 are attributed to the terms M7 in (1.5). 

We shall assume that the constants 130, 130 ~10 in (1.3) for specified 1 i are chosen so that the 
elastic forces maintain the resting wing in a position for which ~ = ~J = a~ = 0 when there are no 
integral (viscoelastic) and non-linear terms in (1.3) and no integral terms in the aerodynamic moments 
(1.5). 

We shall put 

(0 i=x i ,  i=1,2,3;  ~1 =x4, ~l =xs ,  [~3 =x6 

After transforming the integral terms in (1.5), we write Eqs (1.2) in the form 

t 

Jc" = Ax + ~ K(t - s)x(s)ds + ~(t) + X'(x) + Y'(x) 
o 

2"  = Jx" + X"(x)  

x = col(x1 . . . . .  x6), x" = col(xl,x2,x3), x "  = col(x4,xs,x6), 

x '=  col(X(, x;), x "=  co (X;:X7 r'= co (r,; r;, 

, ( t )  = co1(¢i,~2,~3) 
(1.8) 

whereA = []aijl] and J = IlJikll--are constant 3 × 6 and 3 × 3 matrices respectively, the non-zero 
elements of matrixJ constitute the diagonal J13 = 1,J22 = -1, J31 = -1; K(t) = Ilgij(t)II--is a continuous 
matrix, the elements of which, by virtue of (1.4) and (1.6), tend exponentially to zero when t --~ + ~ ,  
the functions X',  X" contain the non-linear terms of the corresponding equations (1.2), the functional 
Y' contains the non-linear terms of the integral representations (1.3) and (1.5) and +(t) is a continuous 
function which tends to zero as t ~ + ~ .  For example, for the first equation of (1.8) the elements of 
the matricesA, K(t) and the function d~z(t) have the following values 

alj  = mlj+2 + tl j(0) 
AI 

mt~ + J~l(0) m12 + Jl2(O) 
a14  = ml ' a l 5  = -  ml ' 

llj(t) _ )11(t) 
Klj( t )=- ' -~l ,  KI4( / ) - - -~" -  I , K i s ( t ) = - ~  

l~ - mgy o 
a16 - -  Ai 

)12(0 Kt6(t) = L~,(t) 
AI ' Al 

(1.9) 

•l(t )= nh(t)+~ ° IL~ (s)ds+(XoJll(t ) , j=1 ,2 ,3  

The expressions for aps, Kps(t), d?p(t) (19 = 2, 3) are similar to (1.9) and easily follow from (1.2). The 
functions X~(x), XT(x) in Eqs (1.8) are defined by the formula 

(1.10) X( = ((A 2 - A3)x2x3 + mgzoB2(x"))l At, X{% -x2x 6 + xaB2(x") 

and by analogous expressions when i = 2, 3. 
The characteristic equation 

in which 

det(A~ + K~(~)-  ~,2J T + ~,(A( + Kl (~,))Jr)=o 

A;=lkd, a =lk +31g 

KO(~, )= Sexp(-Ls)Ko(s)ds, i,k = 1,2,3; 
0 

j = l  . . . . .  6 

(1.11) 

corresponds to Eqs (1.8) and (1.9). 
We shall assume that the perturbations associated with the viscoelastic properties of the material 

and the unsteady nature of the flow past the wing (in particular, gusts of wind) are small, that is, in Eqs 
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(1.8)-(1.10),  we shall assume that 

L:(t) = l~i(t), lij(t) = ~tlij(t), Jij(t) = klJij(t), mi(t) = la~i(t) 

, IJz(,  when t~>0 

where ~ (0 < ~ ,< 1) is a small parameter. Then, in Eqs (1.8), the function ¢(t) will contain the parameter 
as a factor. 
Consider Eqs (1.8)-(1.10) in which the functions dpi(t ) are assumed to be persistent disturbances. 

Suppose all the roots h~ of Eqs (1.11) in the domain of its definition, which is given, by virtue of (1.4) 
and (1.6), by the inequality Re h I> - min(eq, or2), are such that Re hl ~< 1 < 0 for a certain l. Then, 
the resolvent o f  the linearized equation (1.8) tends to zero and admits of an exponential estimate. 
Consequently, the theorem in [6] on stability under persistent disturbances is applicable and, according 
to this theorem, the general solution of Eqs (1.8) in a certain neighbourhood of the point xi = O, 
(i = 1 . . . . .  6) is represented by absolutely convergent power series in the initial valuesx0,. = xi(O) of the 
variables x i and of the parameter ~ with coefficients which tend exponentially to zero when t ~ +oo. 
The point xi = 0 is stable under persistent disturbances. Every solution of Eqs (1.8), for which Ix0/] < 

(i = 1,. , . ,  6), ~ < ~ for a certain ~ > 0, tends asymptotically to zero when t ~ +oo. 

2. D E T E R M I N A T I O N  OF THE LYAPUNOV CONSTANT G 2 
IN THE C R I T I C A L  CASE. 

We shall now analyse the stability in the critical case of a single zero root and consider rotational motions 
of  the wing which enables us to obtain an explicit formula for the Lyapunov constant. We shall follow 
the scheme for calculating these constants pointed out earlier in [7, 8]. 

Suppose the wing rotates around the longitudinal axis of its ellipsoid of inertia for the point O. Then, 
subject to the conditions that ot 0 = 0, only elastic forces act in the supports and the moment of the 
aerodynamic forces does not contain terms associated with perturbations of the free stream, Eqs (1.8) 
reduce to the following equations 

Yca=j=~a.4(aajxj+!K3j(t-s)xj(s)d$]+Fa (2.1) 

-~4 = x3 + F4 

where 

~aa 1 + 331 (0)) aaa = (mas + laa), a34 =-~a (mgYo +13 + m31 

J33 (t), K34(t)= J31 (t) (2.2) 
K33(t ) = ~ " A3 

|x x 2 mgX°x24+F'+F"+ .... F4=-~ z 4 +... 
F3= 2A 3 

The functions Kaj(s) possess the property Kaj(t) ~ el(-~/) for certain ~/ > 0, that is, the satisfy the 
inequality 

I K3:(t)[ < C exp(-  7t), C = const > 0 

The quadratic integral terms F'  and the third-degree terms F', which will be described in detail in 
section 3 when determining the constant F' are separated out in Eqs (2.1) and (2.2). It is assumed that 
the corresponding terms are included in the expressions for the moments of the aerodynamic forces. 
After transforming the integral terms, the functional g3, on which the Lyapunov constant g2 depends, 
is represented in the form 
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F ' =  + + F;. 

t !  

~p = S ~ K.m( t - s l , t -  Sa)X.~(Sl)Xp(s2)dslds 2, s,p = 3 , 4  
oo 

(2.3) 

where the integral kernels K~p(Sl, S2) are assumed to be continuous when 0 ~< si ~< t < + ~ (i = 1, 2) 
and possess the property 

[K m' (s I . s 2 ~<Cexp(-o~[sl-o~2s2),~ ' C, tx I ," a2 = const > O '  

We shall assume that the conditions of Theorem 1.1, formulated in [9], are satisfied. This theorem 
also holds when there are integral terms of  the form of (2.3) with kernels of the type considered below 
on the right-hand sides of the equations, as was noted in [8]. 

Suppose the characteristic equation for system (2.1) 

*(~,)  -= ~.2 - )~(a&t + K~(~))-a34 - K~4(~,> = 0 (2.4) 

has a finite number of roots h~ (i = 1 . . . .  , L)  within the domain of its definition, that hL = 0 and hL-1 
< 0 ,  and the remaining roots hl are numbered in increasing order of their real parts and such that 
Re hl > - "y (s = 1 . . . . .  L - 2, 0 < ~/< et2). Then, the condition 

aa4 = -Ka4 (0) 

must be satisfied in the case of  Eqs (2.1). 

The above equality which, according to relations (2.2), can be rewritten in the form 

mgyo-I + m31=O, 1=-13>0 (2.5) 

imposes a condition on the location of the centre of pressure of the wing. Suppose c is the distance from the Ozl 
axis to the centre of pressure C (when a = 0) and R is the magnitude of the normal component of the principal 
aerodynamic force vector applied at this centre (Fig. 1). Then, by confining ourselves to the linear steady state 
part of the force R, its moment can be written in the form 

M = m31ot - cx(pV2/2)o~, x = const 

wherepV2/2 is the pressure head. Consequently, relation (2.5) will be satisfied if 

c =  ( I -  mgyo)(xpV2/'2) -I 

We rewrite the general solution of the linearized equation (2.1) in the form [10] 

x(t) = col(x a (t), x4 (t)) = 

= X ( t ) x ( O ) - ( ~ +  * ' ( ~ t )  exp (~ l t )+  )((t))x(O) 
~ ,  (o) ~'0.~) 

(2.6) 

~ A 

Fig. 1. 

V 
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where 

x<,>:llx,,4 f((t)ee,(-Lo)(Lo>-K,) 

II 1 - a33 - K~3(Z.) I1' 
Suppose X'(t) = (x/~(t))(/,j = 1, 2) is the Lyapunov normal, fundamental matrix of linearized system (2.1). 
We now introduce a matrix Y'(t) = Ilygt) II (i,j = a, 2) which is such that Y'(t)X'(t) = E2 and, following 

the scheme for calculations the Lyapunov constant g3 [7, 8], we make the replacement of variable x3, 
by putting 

y : "!,'~i (t)X 3 + y~2(t)x4 

subject to the condition that yh(t) ~ 0 when t ~> 0. As a result, we obtain the equations 

)' = Y~I(t) F3 (x3, x4 ) + Y(2 (t)F4 (x3' x4 ) + 

(2.7) 

"t'- i [¢4)1 (t, s)F.'4ix3(S), X 4 ($)) + ¢412 ( t , $)F4(x3($) ,  x4 i s ) ) ]d$  (2 .8)  
0 

$)) , ( , , , )  = , ) +  y f= ( t )x# t  

24 = (Y - Y(~Z (t)x4) / Y(I (t) + F4 (x 3, x,  ) (2.9) 

in which the quantity x3 is expressed in terms o fy  and x4 according to relation (2.7). 
Next, we transform Eq (2.9) using the substitution 

Z = exp(~qt)x4 1 x~2(t) (2.10) 

As a result, Eq (2.9) for the non-critical variable becomes 

~: = Z, iz + exp(X'lO / ( y  + F~iy, z,t)| "~ 
x~2it) t, Ytlit) ) (2.11) 

with bounded coefficients when t t> 0. In Eq (2.11). F,i(y, z, t) are the non-linear terms F4(x3, x4) which 
have been transformed to the variables y and z. 

We now eliminate the term which is linear iny  from Eq (2.11) and, for this purpose, we carry out 
the transformation of the variable z 

' ds u =z+ul(t)y, ul(t)=-exp(~qt)~ , , 
o x22(s)yl i(s) 

(2.12) 

in which the continuous, bounded function ul(t) can be represented as 

XI~'(~ q ) , • (2.13) 
ul(t) = u o +ill(t), u 0 = -  112~,(0) ' Ii = 7,, l - K33(Li)+ K33(0) 

where the functiont~l(t) e el(--a0) for a certain a0 > 0. 
Taking account of relations (2.10) and (2.12~, we now determine (sport from an addi!ive function which 

o o  t z tends to zero as t ~ + ) the coefficien o fy  in Eq (2.8) which we shall denote by g2(t). We have 

g~_(t) = ( y;l(t)+ jqh(t,s)dSo )( 2A3mgx° (xi2(t)exp(-~'it))2u~(t)+ F(t)l (2.14) 

where/~(t) is a function which is generated by the integral terms F'  in (2.3) and will be more precisely 
defined below. 
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Starting out from relation (2.14), we obtain the Lyapunov constant g2 = 
t - ) W o o .  

We calculate the constants ~o °, y°l, appearing in the representation of the functions 

lim g(2(t) when 

I 

Iq) j ( t , s )ds  = Ip°i +~pj(t), y[j(t)= yt°j + ~,j(t) 

o (2.15) 

(p j ( t ) , yu ( t )  ~ e~(-a0), j = 1,2 

On the basis of  formulae (2.8) and (2.6) and taking account of the fact that Xla(0) = 1, x21(0) = 0, 
we obtain 

_ + ' ( O ) ( l  ~'] ], yO, =- / -~  q)'(O) (2.16) 
+o _ -N--, L ' + +'<o)) ~, 

Next, we make the following assumption regarding the structure of the integral kernels in formulae 
(2.3) 

• (I) (2) 
K.m (t - .%, t - s 2) = K.,7, (t - s, )Kin (t - s 2 ) 

Suppose that F ° = lira F~o when t ~ +oo in (2.3). Carrying out the corresponding calculations, we 
obtain 

{ . \ 1 0 - s - p  

F:,', : k l">kl'2" <t, - ~, )" ..... "1 ~' | 
<+'(o)> ~ L-T)  

k <iI 7K(iltsIds, i=1,2; s,p=3,4 
,V~ = J " - s p  ~. - 

0 

(2.17) 

Finally, by relations (2.14)-(2.17), we have the expression 

mgx o L~ F ~o  + F o + F o 
g2 = 2A31 ~ ((1),(0))2 (2.18) 

for the Lyapunov constant. 
Hence, on the basis of the theorem on instability in [8, 9], if g2 # 0, the equilibrium position under 

consideration is unstable. 
In the special case, when there are no quadratic integral terms (2.3) in the aerodynamic moments, 

formula (2.18) leads to the instability condition x0 # 0. It is of  interest to investigate the case when 
g2 = 0. Then, the stability of the equilibrium position depends on the ,sign of the constant g3, which is 
determined by the terms of up to the third order of magnitude inclusive on the right-hand sides of  the 
equations. 

3. D E T E R M I N A T I O N  OF T H E  L Y A P U N O V  C O N S T A N T  G 3 

Suppose g2 = 0. We shall discuss the steady part of the moment of the aerodynamic forces. We 
will assume that the wing is rectangular and we will denote the distance from the leading edge of 
the wing A to the centre of pressure C by S and the chord of the wing by d. The cross-section of the 
wing is the plane orthogonal to the Oz] axis and which passes through C, showed schematically in 
the figure, where O" is the point of intersection of Ozl with this plane. On the basis of results of 
investigations carried out previously [11] in the domain of small changes in the angle of attack a, the 
relations 

S = d(s  o +szc~2), R = rl~ - r~Ot 3 

(s 0, s2fi, r~ = const > 0) 
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can be taken as an approximation for S and the magnitude of the normal pressure R. For the steady 
part M' of the moment of the aerodynamic forces, which depend on or, this gives the expression 

M" = nz~10[ + re'o[ 3 (3.1) 

m~l = dsofi > O, m" = - (c t  3 +ds2ti), c = O'A ~ d s  o 

up to terms in third-order infinitesimals. 
Taking account of representation (3.1), we shall consider the following model of the moment of 

the aerodynamic forces acing on the wing assuming, for simplicity, that unsteady flow past the wing is 
solely taken into account by terms of the first order. We shall assume that the moment M3 of the 
aerodynamic forces is specified, by analogy with formula (1.2), obtained after reduction, by the following 
relation 

• . " m "  3 M~ / A~ = m~t0[ + m35o33 + m'013 + t03+ 

! t 

+~/(~3 (t - s)Ol3(s)ds + ~ K~I (t - s)0[(I)(s)ds (3.2) 
0 0 

in which the dissipative term rn~5oJ 3 is added and also a term containing t@ The angle of attack a, which 
is calculated for the leading edge of the wing as the angle between the relative velocity vector of the 
free stream and the plane of the wing, is given by the formula (Vis the modulus of the absolute velocity 
of the stream) 

tg0[ = ( ~ j  - ( a l  V)o)3) / 41 - ~ 

which gives the expansion 

0[ = 0[(11 + 0[(3) + . . .  

a _ l a2~.(l ) 1 m 3 (3.3) 
0[(I)((03,Pl ) = ill --'~0-) 3, 0[(3)((.03,P3)- 71..,1~ --'~(0[ )" 

As a result, in the case in question, we shall have Eqs (2.1) in which by (3.2), 

a33 = m35" - (a I V)m'31, a34 = m31 + (mgzo - 1) I A~ 

K33(/) = g~3(t) - (a / v )g~l  (t), K34(t ) = K.~ I (t) (3.4) 

F, , (x3,s4)=m~t0[(3)(x3,x4)+m,(0[( i ) (x3,x4))3  ,, 3 + m  X 3 

Apart from an additive function of the class el(--a0) (a0 > 0), the coefficient of the term containing 
y3 in the equation for the critical variable can be written, taking account of the condition g2 = 0, as 
follows: 

() (t) !~p(t )ds)F ( (t) (t)) ' ( t )  . . . . .  g3 = '11 + 1 , S X 3 , X 4 - 

-2(Y~2( t )+!qI2( t , s )ds l~c3( t )2c2( t )  (3.5) 

where 

J3(t) = (1 + ul( t )y(z( t )x~2(t)exp(Xlt))(y~l( t ) )  -i 

x4 (t) = -u  I (t)x~2 (t) exp0~lt) 

(3.6) 

We represent the function (3.6) in the form 

5¢i(t) = x°i + xi(t)  , x i( t )  ~ e~(-0[o), 0[0 > 0 
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and calculate the constants x ° and also the c o n s t a n t s  y°2, q~0 introduced in (2.15). We have 

x.a = l,~-;(0), l, ) x° = l,~-'~0) (3.7) 

y° 2 = ~'(0),  q0 ° = -~ ' (0 )  

On separating out the constant term from g~, (t) we find g3 = F"(  x0, x° )  and, from (3.4)-(3.7) and 
(2.16), we obtain the expression 

g.a k l , , , ( O ) )  [ . ~, V ) L 7 - 5 \  - ~ L )  + 

(3.8) 

in which, by (3.4) and (2.4) 

* ' (0 )  = -m;5  + v m ; i  + 7(-K33 (s)ds + sK.~(s))ds 
o 

L = Lj [1 - ~'l (X] - K33(~'t ) + K~3 (0))-I ] 

If g3 > 0, the equilibrium is unstable. If g3 < 0 and the integral kernels in Eq (2.1) have an exponential- 
polynomial structure, the equilibrium is asymptotically stable [9]. 

When there are no integral terms which take account of the unsteady nature of the flow past the 
wing, we have ll = kl, L = 0, and formula (3.8) takes the form 

I (1 , ) 
g3 = " - - I n  I l l  + r l | t  

(@'(0)) 3 ~,6 " 
(3.9) 

The constant g3 in (3.9) is identical to the analogous constant determined using the theory of critical 
Lyapunov cases for differential equations. 

On taking account of the dissipative nature of the terms m~stO 3 in formula (3.2) and the interpretation 
of the coefficient m~l given in (3.1), it can be concluded that, in (3.9), the quantity ~ ' (0)  > 0. 

It then follows from (3.9) that there is the asymptotic stability when m'  < -m~1/6. 
The effect of the unsteady nature of the flow past the wing on the stability turns out to be substantial 

if the constant g3 (3.9) is close to zero. 
Note that the constant g3 changes if the applied forces are changed and, in particular, if, for example, 

we take a quantity which is linear in O, as the moment of the elastic forces unlike the moment of these 
forces assumed in sections 2 and 3, which is linear in 131 = sin O. 
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